



#### Л.И. Огородов, В.А. Шапкина

Санкт-Петербургский политехнический университет Петра Великого Вологодский государственный университет

## МЕРА ПОВРЕЖДЕНИЙ СПЛАВА НА МОМЕНТ РАЗРУШЕНИЯ В УСЛОВИЯХ НЕСТАЦИОНАРНЫХ ВЫСОКОТЕМПЕРАТУРНЫХ НАГРУЖЕНИЙ С МГНОВЕННОПЛАСТИЧЕСКИМИ ВОЗДЕЙСТВИЯМИ

Выполнены расчеты меры повреждений сплава ЭИ-607A при нестационарных режимах высокотемпературного (700°С) нагружения с учетом мгновеннопластического деформирования в условиях сложного напряженного состояния. Предложены комбинированные кинетические уравнения повреждений.

Сплав, сложное нагружение, ползучесть, поврежденность, кинетические уравнения, разрушение.

Многообразие сталей и сплавов, а также режимов нагружения деталей и элементов конструкций вызвало появление работ по исследованию длительного разрушения материалов и методов суммирования повреждений в условиях сложных режимов эксплуатации оборудования [1-8]. Известны три типа феноменологических моделей длительного разрушения: силовые, деформационные и энергетические. Модели длительного разрушения предполагают одновременное протекание двух и более процессов разрушения, которые накладываются или даже взаимодействуют друг с другом [1]. В этих случаях приходится прибегать к комбинированным уравнениям повреждений. Выбор адекватных кинетических уравнений повреждений, допускающих прогнозирование долговечности и расчет меры повреждений при различных видах напряженного состояния и различных режимах длительного нагружения, проблематичен ввиду недостатка экспериментальных данных.

В настоящей работе в ходе исследования использовались результаты экспериментального исследования разрушения жаропрочного сплава ЭИ-607А (ХН80ТБЮ) в условиях нестационарного нагружения с учетом мгновеннопластических воздействий в определенные промежутки времени при температуре 700°С [2]. Экспериментальная часть работы выполнена на испытательной машине УМЭ-10ТМ с дополнительным оборудованием, позволяющим проводить опыты в условиях плоского напряженного состояния (растяжение-сжатие с реверсивным кручением). Размеры рабочей части образцов сплава ЭИ-607А обеспечивали условия плоского однородного напряженного состояния в стенке образца. Допуск на разностенность по длине и диаметру составлял 0,02 мм. Режимы нагружения задавались в истинных напряжениях. Нагрузка, действующая на образец, корректировалась в соответствии с его текущими размерами. Величина интенсивности мгновеннопластической деформации задавалась в пределах 4%.

В работе [2] показано то, что мгновеннопластическая деформация оказывает влияние на длительную прочность сплава в условиях высокотемпературной ползучести. Процесс накопления повреждений в

сплаве удовлетворительно описывается с помощью предложенных автором [2] соотношений.

Задачи работы:

- 1. Предложить варианты комбинированных уравнений повреждений с использованием соотношения наследственного типа и с учетом влияния мгновеннопластических деформаций.
- 2. Сравнить результаты расчета меры повреждений на момент фактического разрушения сплава по рассматриваемым кинетическим уравнениям.
- В [2] использовалось кинетическое уравнение силового типа Бэйли:

$$\frac{d\Pi}{d\tau} = f(\boldsymbol{\sigma}_{\mathfrak{I}}). \tag{1}$$

Функция напряжений имела вид

$$f(\sigma_{\ni}) = \frac{1}{\mathcal{C}_0} \exp \frac{\sigma_{\ni}}{A_0} \ \cdot$$
 Текущая поврежденность подсчитывалась по

Текущая поврежденность подсчитывалась по формуле

$$\Pi_{1} = \int_{0}^{\tau} \frac{1}{C_{0}} \exp \frac{\sigma_{3}}{A_{0}} d\tau , \qquad (3)$$

где экспериментально определены для сплава ЭИ-607 A  $C_0$ =2,90 ·  $10^8$  сек и  $A_0$ =48,34 МПа.

Эквивалентное напряжение определялось соотношением Писаренко-Лебедева

$$\sigma_{3} = \chi \sigma_{i} + (1 - \chi) \sigma_{1}. \tag{4}$$

Значение  $\chi$  =0,65 определено по кривым длительной прочности при двух видах сложного напряженного состояния [2]. В случае сжатия при линейном и при сложном напряженном состояниях, когда наибольшее главное напряжение оказывалось отрицательным, принималось  $\sigma_2 = \chi \sigma_i$ .

Поврежденность от мгновеннопластического деформирования определялось [2] уравнением повреждений

$$\Pi_2 = \frac{e_i^{M\Pi}}{C} , \qquad (5)$$

где постоянная С имеет смысл мгновеннопластической деформации, приводящей к разрушению. Эта

величина определялась из опыта на деформирование (V=50 мм/мин) при температуре T=700°C и составила для сплава ЭИ-607A величину  $C = e_{i,p}^{M\Pi} = 8\%$ .

В результате использовалось комбинированное уравнение [1, 2] вида

$$\Pi = \Pi 1 + \Pi 2 + D\Pi 1\Pi 2 , \qquad (6)$$

где D — экспериментальный параметр, который в общем случае зависит от вида напряженного состояния, при котором осуществлялась мгновеннопластическая, а также вязкопластическая деформация, и от интенсивности напряжений при ползучести.

Функция D аппроксимирована в виде

$$D = a + b \left| arctgK \quad (Mn) \right| \quad n \quad ,$$

где  $K = \tau/\sigma$ , a=0.45, b=0.08, n=2.5 [2].

Режимы сложного нагружения сплава ЭИ-607А и расчетные значения меры повреждений по уравнению (6) приведены в таблицах 1 и 2. Процесс накопления повреждений при высокотемпературной ползучести с учетом влияния мгновеннопластической деформации удовлетворительно описывается с помощью соотношения (6). Однако следует отметить, что комбинированное уравнение (6) недостаточно учитывает фактор времени, то есть не фиксирует момент воздействия каждого мгновеннопластического воздействия и длительность влияния этой деформации до момента разрушения материала. В (6) используется кинетическое уравнение (3) силового типа линейного суммирования повреждений по Бейли, дающее значительный разброс значений меры повреждений.

Для описания процесса диссеминированных повреждений в сталях и сплавах (ЭИ-182, ЭИ-765, ЭИ-607A, ЭИ-893ВД, 800H) использовалось [3–8] кинетическое уравнение наследственного типа

$$\Pi_H = \int_0^\tau \boldsymbol{\sigma}_{\mathfrak{I}}(\theta) K(\tau - \theta) d\theta, \qquad (7)$$

где  $\sigma_{\Im}(\theta)$  — режим изменения эквивалентного напряжения по критерию Писаренко—Лебедева (4),  $\kappa(\tau-\theta)$  — функция влияния (ядро), определяемая по уравнению кривой длительной прочности (при  $700^{\circ}C$ ) сплава ЭИ-607А ( $\sigma_{\Im}=942,15-111,34\lg \tau$ , где  $\sigma_{\Im}$  — в МПа,  $\tau$  — в секундах).

Мера повреждений сплава по уравнению (7) при нестационарных режимах нагружения без учета мгновеннопластического деформирования приведена в таблицах 1 и 2. Здесь отметим, что поврежденность материала в этом случае была меньше П=1 и составляла в среднем 0,914. Этот факт указывает на влияние мгновеннопластической деформации на поврежденность.

Предпринята попытка использовать комбинированное уравнение (6), где экспериментальный параметр D определялся без учета влияния вида напряженного состояния. Для определения параметра D использовались три нестационарных режима нагружения с учетом мгновеннопластического деформирования. Параметр определен равным D=-0,92. Результаты расчета меры повреждений по уравнению  $\Pi_{\rm K}=\Pi_1+\Pi_2$  - 0,92  $\Pi_1$   $\Pi_2$  представлены в таблицах 1 и 2.

Таблица 1 Нестационарные режимы нагружения сплава ЭИ-607А с учетом мгновеннопластического деформирования и расчетные меры повреждений на момент разрушения

| Режимы нагружения |                   |                          |                         |                      |                                    |                              | Расчетные меры повреждений        |          |                                  |                |       |       |              |       |
|-------------------|-------------------|--------------------------|-------------------------|----------------------|------------------------------------|------------------------------|-----------------------------------|----------|----------------------------------|----------------|-------|-------|--------------|-------|
| N<br>режи-<br>ма  | N<br>ступе-<br>ни | σ <sub>хх</sub> ,<br>МПа | σ <sub>э</sub> ,<br>МПа | t·10 <sup>-4</sup> , | e <sub>xx</sub> <sup>MII</sup> , % | $e_{x\theta}^{\ \ M\Pi}$ , % | e <sub>i</sub> <sup>MII</sup> , % | П<br>[2] | $\Pi_{\scriptscriptstyle \rm H}$ | $\Pi_{\kappa}$ | П́е   | П̈́e  | $\Pi_{\tau}$ | Π΄΄τ  |
| 1                 | 1                 | 400                      | 400                     | 1,08                 | -                                  | -                            | -                                 | 0,967    | 0,898                            | 0,963          | 0,910 | 0,936 | 0,921        | 0,995 |
|                   | 2                 | 400                      | 400                     | 0,72                 | -2                                 | 1                            | 2                                 |          |                                  |                |       |       |              |       |
|                   | 3                 | 400                      | 400                     | 1,08                 | -1                                 | 1                            | 1                                 |          |                                  |                |       |       |              |       |
| 2                 | 1                 | 400                      | 400                     | 1,08                 | -                                  | 1                            | -                                 | 0,955    | 0,872                            | 1,035          | 0,954 | 0,979 | 0,915        | 0,946 |
|                   | 2                 | 400                      | 400                     | 0,54                 | -1,54                              | -2,02                        | 2,8                               |          |                                  |                |       |       |              |       |
|                   | 3                 | 400                      | 400                     | 0,54                 | -2,54                              | -2,02                        | 3,8                               |          |                                  |                |       |       |              |       |
| 3                 | 1                 | 400                      | 400                     | 1,08                 | -                                  | -                            | -                                 | 1,035    | 0,885                            | 0,996          | 0,940 | 0,954 | 0,956        | 0,967 |
|                   | 2                 | 400                      | 400                     | 0,54                 | -1                                 | -                            | 1                                 |          |                                  |                |       |       |              |       |
|                   | 3                 | 400                      | 400                     | 0,90                 | -2,54                              | -2,02                        | 3,8                               |          |                                  |                |       |       |              |       |
| 4                 | 1                 | 400                      | 400                     | 1,80                 | -                                  | -                            | -                                 | 1,120    | 0,944                            | 1,002          | 0,960 | 0,976 | 0,978        | 1,087 |
|                   | 2                 | -                        | -                       | 1,80                 | -1                                 | -                            | 1                                 |          |                                  |                |       |       |              |       |
|                   | 3                 | 420                      | 420                     | 1,08                 | -1                                 | -                            | 1                                 |          |                                  |                |       |       |              |       |
|                   | 4                 | 400                      | 400                     | 1,08                 | -1,5                               | -                            | 1,5                               |          |                                  |                |       |       |              |       |
| 5                 | 1                 | 400                      | 400                     | 2,16                 | -                                  | -0,87                        | 1                                 | 0,951    | 0,917                            | 0,976          | 0,938 | 0,948 | 0,973        | 1,018 |
|                   | 2                 | 420                      | 420                     | 1,35                 | -0,55                              | -1,59                        | 2                                 |          |                                  |                |       |       |              |       |
| 6                 | 1                 | -400                     | 260                     | 2,52                 | -                                  | -                            | -                                 | 0,944    | 0,926                            | 1,018          | 0,954 | 0,972 | 1,005        | 1,050 |
|                   | 2                 | 400                      | 400                     | 1,08                 | -2                                 | -                            | 2                                 |          |                                  |                |       |       |              |       |
|                   | 3                 | 400                      | 400                     | 1,26                 | -3                                 | -                            | 3                                 |          |                                  |                |       |       |              |       |
| 7                 | 1                 | -400                     | 260                     | 1,80                 | -                                  | -                            | -                                 | 0,933    | 0,947                            | 1,050          | 0,967 | 0,977 | 1,020        | 1,087 |
|                   | 2                 | -400                     | 260                     | 1,08                 | 0,83                               | 1,08                         | 1,5                               |          |                                  |                |       |       |              |       |
|                   | 3                 | 400                      | 400                     | 1,08                 | 0,83                               | 1,08                         | 1,5                               |          |                                  |                |       |       |              |       |
|                   | 4                 | 400                      | 400                     | 1,17                 | 3                                  | -                            | 3                                 |          |                                  |                |       |       |              |       |

Режимы нагружения Расчетные меры повреждений  $e_{x\theta}^{\overline{M\Pi}}$ N режи-N ступеt·10<sup>-4</sup>, П П″е  $\Pi_{\tau}$ σ<sub>xx</sub>,  $\tau_{x\theta}$ σ,,  $\prod_{\nu}$  $\Pi_{\tau}$ % % % [1,2]ма c МΠа МΠа МΠа 230 394,9 1,08 0,957 0,895 1,005 0,934 0,961 0,957 1,002 1 203 2 230 203 394,9 1,08 -1,10 -0,55 2 3 230 203 394,9 0,99 -1,14 -0,72 3 2 230 0,972 0,934 0,954 1 203 394,9 1,44 0,946 0,938 1,058 1,098 2 230 394,9 -1,74 2 203 1,44 3 400 400 1,44 2 -1,74 -0,885 1,082 0,942 0,993 0,988 3 1 154 244 332,9 0,72 -0,871 1,112 0.915 -2 400 400 0,72 -0.871 3 400 400 0,72 -0,51-2,012,5 4 400 400 0,36 -2,01 -2,09 4

-1.44

0,926

1

1

3

0,942 1,025

Непропорциональные режимы нагружения сплава ЭИ-607A с учетом мгновеннопластического деформирования и расчетные меры повреждений на момент разрушения

Предложено использовать комбинированное кинетическое уравнение повреждений в виде

-203

-203

314,4

314,4

400

400

1,80

1,08

1.08

1.26

1,00

1.00

-0.1

-230

-230

400

400

1

2

3

4

4

$$\Pi_{e} = \int_{0}^{\tau} \sigma_{3}(\theta) K(\tau - \theta) d\theta + (1 - \Pi_{H}) \frac{\boldsymbol{e}_{i}^{M\Pi}}{\boldsymbol{e}_{i,p}^{M\Pi}},$$
(8)

где  $e_{i,p}^{MII}$  — интенсивность мгновеннопластической деформации, в первом варианте, на последнем участке нагружения (считаем то, что последний участок нагружения является определяющим). В другом варианте величину  $e_i^{MII}$  представили суммой деформаций мгновеннопластических воздействий  $e_i^{MII} = \Sigma e_i^{MII}$ . Расчетные значения меры повреждений по уравнению (8), так же как и по соотношениям (6) и (8), не учитывают влияние момента и времени мгновеннопластического воздействия.

Другой вариант комбинированного уравнения повреждений представлен как

$$\Pi_{\tau} = \int_{0}^{\tau} \sigma_{\mathcal{I}}(\theta) K(\tau - \theta) d\theta + m \sum_{i,j} \frac{e_{i,j}^{MII} \tau_{j}}{e_{i,p}^{MII} \tau_{p}},$$
(9)

где  $e_{i,j}^{MI}$  — мгновеннопластическая деформация на соответствующей ступени нагружения,  $\tau_j$  — время влияния деформации с момента воздействия до разрушения материала,  $e_{i,p}^{MII}$  =8% — предельная мгновеннопластическая деформация, используемая в (5),  $\tau_p$  — время опыта на деформирование сплава (V=50 мм/мин) до разрушения ( $\tau_p$ =60сек) при температуре 700°C, m — безразмерный коэффициент (m=0,001).

Расчетные значения меры повреждений сплава в двух вариантах  $\Pi_{\tau}$  и  $\Pi_{\tau}$  представлены в таблицах 1 и 2. В первом варианте принято учитывать время воздействия мгновеннопластической деформации на последней ступени нагружения. Во втором варианте учитывается воздействие всех прило-

женных  $e_i^{MII}$  деформаций. Мгновеннопластическая деформация не только вносит вклад в общую поврежденность, но и влияет на процесс накопления повреждений.

0,964

0,971

1,021

1,065

Эффективность применяемых уравнений повреждений оценивается путем сравнения расчетного значения меры повреждений  $\Pi$  на момент фактического разрушения материала с тем теоретическим значением  $\Pi = 1$ , которое должно было бы наблюдаться при идеальном описании процесса разрушения. Так как в качестве функционального параметра уравнений повреждений силового типа используется кривая статической усталости (длительной прочности), а в уравнениях деформационного типа - зависимость предельных деформаций, отвечающие 50% вероятности разрушения, то можно предположить, что при нестационарном нагружении теоретическое условие  $\Pi$ =I отвечает той же вероятности. Эффективность анализируемых уравнений оценивается также величинами отклонений меры  $\Delta\Pi$  индивидуальных опытов от среднего значения меры повреждений ( $\Pi_{CP}$ ) для сопоставимых режимов нагружения.

В таблицах 1 и 2 представлены режимы нестационарного нагружения образцов сплава ЭИ-607А и расчетные меры повреждений материала на момент разрушения, а в таблице 3 приведены средние значения меры повреждений ( $\Pi_{CP}$ ) и величины отклонений  $\Delta \Pi$ .

Таблица 3 Средние значения и отклонения от среднего меры повреждений сплава

| Обозна-        | Π[2]    | $\Pi_{\text{\tiny H}}$ | П́к   | П́е   | П″е   | $\Pi_{\tau}$ | Π΄΄τ  |
|----------------|---------|------------------------|-------|-------|-------|--------------|-------|
| чение          | (6),(7) | (7)                    | (6)   | (8)   | (8)   | (9)          | (9)   |
| $\Pi_{\rm cp}$ | 0,986   | 0,914                  | 1,011 | 0,945 | 0,965 | 0,974        | 1,028 |
| +ΔΠ            | 0,134   | 0,033                  | 0,071 | 0,022 | 0,028 | 0,084        | 0,070 |
| -ΔΠ            | 0,060   | 0,042                  | 0,048 | 0,035 | 0,029 | 0,059        | 0,082 |

Комбинированное уравнение (6) удовлетворительно описывает процесс накопления повреждений. Однако определение параметра D связано с трудностями и дополнительными экспериментами. Отмечается значительный разброс значений меры повреждений по Бейли (3).

Расчеты меры повреждений по кинетическому уравнению наследственного типа (7) подтверждают вывод о влиянии мгновеннопластических деформаций на сопротивление длительному разрушению сплава (среднее значение меры повреждений на момент разрушения  $\Pi_H = 0.914$ , то есть меньше теоретической величины  $\Pi=1$ ).

Возможен способ определения параметра D в зависимости (6) с использованием определенного количества опытов на нестационарное нагружение материала с мгновеннопластическими воздействиями разного вида напряженного состояния. Определена величина параметра D=-0.92.

Сопоставление значений меры повреждений по уравнениям (8) и (9)  $\Pi_e$  и  $\Pi_e$ , а также  $\Pi_\tau$  и  $\Pi_\tau$  не подтверждает определяющего влияния мгновеннопластического воздействия на последнем перед разрушением участке нагружения.

В комбинированном уравнении повреждений (9) имеется возможность учета момента и длительности мгновеннопластического воздействия на величину меры повреждений.

В данной статье предложены комбинированные уравнения повреждений  $\Pi_e$  (8),  $\Pi_\tau$  (9) и  $\Pi \kappa$  (аналог (6) при D = -0,92) для расчета меры повреждений при нестационарных режимах нагружения сплава с учетом мгновеннопластических воздействий.

Расчетные значения меры повреждений по предложенным комбинированным уравнениям близки к теоретическому значению, равному единице, причем отклонения значений меры от средней величины меры и повреждений сравнительно невелики.

#### Литература

- 1. Павлов, П. А. Основы инженерных расчетов элементов машин на усталость и длительную прочность / П.А. Павлов. Ленинград : Машиностроение, 1988. 252 с.
- 2. Новиков, А. П. Высокотемпературная ползучесть и длительное разрушение жаропрочного сплава с учетом мгновеннопластического деформирования при сложных нестационарных режимах нагружения : специальность 01.02.04 : автореферат диссертация на соискание ученой степени кандидата технических наук / А. П. Новиков—Ленинград, 1983. 18 с.
- 3. Огородов, Л. И. Экспериментальная проверка эффективности кинетических уравнений силового типа при описании длительного разрушения жаропрочного сплава в агрессивной среде в условиях нестационарного нагружения / Л. И. Огородов, А. С. Белов // Проблемы прочности. -1995. -№3. С. 19-27.
- 4. Огородов, Л. И. Экспериментальная проверка применимости кинетического уравнения повреждений наследственного типа для расчета момента разрушения жаропрочного сплава в условиях ползучести / Л. И. Огородов, С. Я. Куранаков // Вестник машиностроения. 1995. №10. С. 26-28.
- 5. Огородов, Л. Н. Экспериментальная проверка применимости уравнений повреждений наследственного типа для оценки момента разрушения сталей и сплавов в условиях высокотемпературной ползучести при нестационарных режимах нагружения / Л. Н. Огородов // Проблемы машиностроения и надежности машин. − 1996. №4. С. 98-107.
- 6. Куранаков, С. Я. Описание процесса разрушения жаропрочного сплава при малоцикловом нагружении и ползучести / С. Я. Куранаков, Л. И. Огородов // Известия Томского политехнического университета. − 2005. − Т. 308, №3. − С. 129-131.
- 7. Куранаков, С. Я. Расчетно-экспериментальная оценка долговечности жаропрочного сплава в условиях малоцикловой усталости и ползучести / С. Я. Куранаков, Л. И. Огородов // Ползуновский вестник. 2006. №4. С. 269-274.
- 8. Курилович, Н. Н. Поврежденность сплава 800Н при нестационарном длительном нагружении / Н. Н. Курилович, Л. И. Огородов, Ю. В. Сараев // Весці Нацыянальной Акадэміі навук Беларусі. 2001. №2. С. 5-9.

### L.I. Ogorodov, V.A. Shapkina

# MEASURE OF DAMAGE TO THE ALLOY AT THE TIME OF FRACTURE UNDER CONDITIONS OF NONSTATIONARY HIGH-TEMPERATURE LOADING WITH INSTANT PLASTIC INFLUENCE

The calculations of the measures of damage of the alloy EI-607A for unsteady modes high  $(700^{\circ}C)$  loading given instant plastic deformation in complex stress state. The combined kinetic equations of damage are proposed.

Alloy, complex loading, creep, damage, kinetic equations, fracture.